China Best Sales 1840mm 13t American Model Inboard Type Axle Parts Semi Trailer Axle for Sale axle car part

Product Description

Quality trailer axle semi trailer parts tandem axle

Product Parameters

    

Inboard drum series trailer axle
Axle Type Max Capacity
(T)
Track
L2 (mm)
Brake
(mm)
Spring Seat Installation Axle Beam
(mm)
Centre Distance Of Brake Chamber
(mm)
Wheel Fixing Total Length
(mm)
Recommended Wheel Axle Weight
(kg)
Stud P.C.D
(mm)
H
(mm)
HRD-UI08 8 1850 420*150 ≥1080 Round 127 428 10*M22*1.5 ISO 335 280.8 ~2145 7.5V-20 323
HRD-U13I1 13 1840 420*180 ≥970 Round 127 388 10*M22*1.5 ISO 285.75 220.8 ~2180 7.5V-20 360
HRD-U13I2 13 1840 420*180 ≥970 Round 127 382 10*M22*1.5 ISO 335 280.8 ~2180 7.5V-20 342
HRD-U13I3 13 1840 420*180 ≥930 Square 150 388 10*M22*1.5 ISO 285.75 220.8 ~2180 7.5V-20 358
HRD-U13I4 13 1840 420*180 ≥930 Square 150 382 10*M22*1.5 ISO 335 280.8 ~2180 7.5V-20 340
HRD-U14I1 14 1840 420*220 ≥930 Square 150 342 10*M22*1.5 ISO 335 280.8 ~2180 7.5V-20 358
HRD-U15I1 15 1850 420*180 ≥980 Round 127 390 10*M22*1.5 ISO 335 280.8 ~2200 8.0V-20 344
HRD-U15I2 15 1850 420*180 ≥940 Square 150 390 10*M22*1.5 ISO 335 280.8 ~2200 8.0V-20 370
HRD-U16I1 16 1850 420*220 ≥980 Round 127 350 10*M22*1.5 ISO 335 280.8 ~2200 8.0V-20 362
HRD-U16I2 16 1850 420*220 ≥940 Square 150 350 10*M22*1.5 ISO 335 280.8 ~2200 8.0V-20 388
HRD-U20I1 20 1850 420*220 ≥940 Square 150 345 10*M24*1.5 ISO 335 280.8 ~2247 8.5V-20 430
HRD-U25I1 25 1850 420*220 ≥940 Square 150 340 10*M24*1.5 ISO 335 280.8 ~2215 8.5V-20 474

 

Outboard drum series trailer axle 
Axle Type Max Capacity
(T)
Track
L2 (mm)
Brake
(mm)
Spring Seat Installation Axle Beam
(mm)
Centre Distance Of Brake Chamber
(mm)
Wheel Fixing Total Length
(mm)
Recommended Wheel Axle Weight
(kg)
Stud P.C.D
(mm)
H(mm)
HRD-U13O1 13 1840 420*180 ≥970 Round 127 392 10*M22*1.5 ISO 285.75 220.8 ~2180 7.5V-20 345
HRD-U13O2 13 1840 420*180 ≥970 Round 127 388 10*M22*1.5 ISO 335 280.8 ~2180 7.5V-20 363
HRD-U13O3 13 1840 420*180 ≥970 Round 127 372 10*M22*1.5 ISO 285.75 220.8 ~2180 7.5V-20 348
HRD-U13O4 13 1840 420*180 ≥970 Round 127 372 10*M22*1.5 ISO 335 280.8 ~2180 7.5V-20 360
HRD-U13O5 13 1840 420*180 ≥970 Square 127 392 10*M22*1.5 ISO 285.75 220.8 ~2180 7.5V-20 340
HRD-U13O6 13 1840 420*180 ≥970 Square 127 388 10*M22*1.5 ISO 335 280.8 ~2180 7.5V-20 358
HRD-U13O7 13 1840 420*180 ≥970 Square 127 372 10*M22*1.5 ISO 285.75 220.8 ~2180 7.5V-20 343
HRD-U13O8 13 1840 420*180 ≥970 Square 127 372 10*M22*1.5 ISO 335 280.8 ~2180 7.5V-20 355
HRD-U13O9 13 1840 420*180 ≥930 Square 150 392 10*M22*1.5 ISO 285.75 220.8 ~2180 7.5V-20 343
HRD-U13O10 13 1840 420*180 ≥930 Square 150 388 10*M22*1.5 ISO 335 280.8 ~2180 7.5V-20 361
HRD-U13O11 13 1840 420*220 ≥930 Square 150 372 10*M22*1.5 ISO 285.75 220.8 ~2180 7.5V-20 346
HRD-U13O12 13 1840 420*220 ≥930 Square 150 372 10*M22*1.5 ISO 335 280.8 ~2180 7.5V-20 358
HRD-U13O13 13 1820 420*180 ≥910 Square 150 388 10*M22*1.5 ISO 335 280.8 ~2150 7.5V-20 340
HRD-U15O1 15 1850 420*180 ≥940 Square 150 398 10*M22*1.5 ISO 335 280.8 ~2200 8.0V-20 385
HRD-U16O1 16 1850 420*220 ≥940 Square 150 358 10*M22*1.5 ISO 335 280.8 ~2200 8.0V-20 405

Product Performance

Trailer parts trailer axle performance:
1. Integrated high quality low-alloy axle tube has strong carrying capacity and high bending strength.
2. The axle tube tempered as a whole and then quenching optimized which made by finishing high-precision machinery.
3. Environmentally friendly Non-asbestos brake shoe which increase the wearing life more than 25%.
4. Brake components have strong interchangeability, S-camshaft, so that have more flexible and reliable brake action. 
5. Adopt Mobil XHP222 grease which has maintenance-free longer.
6. Adopt heavy-duty bearings which specially used for heavy vehicles have strong interchangeability.
7. The unique beauty with O-ring of the steel wheel cover has special good performance. 
8. ABS optional.

 

Production Process

Trailer Axle Process Manufacturing

Packaging & Shipping

Shipping way: Air shipping, sea shipping and railway shipping. 
Packing: anti-rust treatment, packed by pallet or in contactiner. 

Company Profile

 

HangZhou Hongruida Trailer Parts Co., Ltd. mainly produces semi trailer and its related accessories, including various types of American type trailer axle, concave axle, spoke axle, German type trailer axle, agricultural axle, American type suspension, single point suspension, rigid suspension, air suspension, landing gear, kingpin, air chamber, air reservoir, etc. Our sales network covers all regions of the world. Both new and old customers support customization.

Advanced processing technology, first-class production line, professional production quality, high-quality service concept, guarantee your trailer business brighter! The products are produced strictly in accordance with national implementation standards, with reasonable prices, and the cost performance ratio is far ahead in the industry, which is highly praised by customers!
 
Source strength manufacturers, welcome your inquiry!

FAQ

Q1. What is your terms of packing?
A: Generally, we pack our goods with standard wooden box for outer package. If you have legally registered patent, we can pack the goods in your branded boxes after getting your authorization letters.

Q2. What is your terms of payment?
A: T/T 30% as deposit, and 70% before delivery. We’ll show you the photos of the products and packages before you pay the balance.

Q3. What is your terms of delivery?
A: EXW, FOB, CFR, CIF, DDU.

Q4. How about your delivery time?
A: Generally, it will take 7 to 15 days after receiving your advance payment. The specific delivery time depends on the items and the quantity of your order.

Q5. Can you produce according to the samples?
A: Yes, we can produce by your samples or technical drawings. We can build the molds and fixtures.

Q6. What is your sample policy?
A: We can supply the sample if we have ready parts in stock, but the customers have to pay the sample cost and the courier cost.

Q7. Which countries have been exported to?
A: Our trailer axles, suspension, landing gear, leaf spring have been exported to many countires, Russia, US, Indonesia, Japan, South Africa, Nigeria etc countries. Welcome your inquiry.

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Condition: New
Axle Number: 2
Application: Trailer
Material: Steel
Type: Rear Axles
Samples:
US$ 450/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

axle

What is the role of axles in electric vehicles, and how do they differ from traditional axles?

Electric vehicles (EVs) have unique requirements when it comes to their drivetrain systems, including the axles. The role of axles in EVs is similar to traditional vehicles, but there are some key differences. Here’s a detailed explanation of the role of axles in electric vehicles and how they differ from traditional axles:

Role of Axles in Electric Vehicles:

The primary role of axles in electric vehicles is to transmit torque from the electric motor(s) to the wheels, enabling vehicle propulsion. The axles connect the motor(s) to the wheels and provide support for the weight of the vehicle. Axles are responsible for transferring the rotational force generated by the electric motor(s) to the wheels, allowing the vehicle to move forward or backward.

In electric vehicles, the axles are an integral part of the drivetrain system, which typically includes an electric motor(s), power electronics, and a battery pack. The axles play a crucial role in ensuring efficient power transfer and delivering the desired performance and handling characteristics of the vehicle.

Differences from Traditional Axles:

While the fundamental role of axles in electric vehicles is the same as in traditional vehicles, there are some notable differences due to the unique characteristics of electric propulsion systems:

1. Integration with Electric Motors: In electric vehicles, the axles are often integrated with the electric motors. This means that the motor(s) and axle assembly are combined into a single unit, commonly referred to as an “electric axle” or “e-axle.” This integration helps reduce the overall size and weight of the drivetrain system and simplifies installation in the vehicle.

2. High Torque Requirements: Electric motors generate high amounts of torque from the moment they start, providing instant acceleration. As a result, axles in electric vehicles need to handle higher torque loads compared to traditional axles. They are designed to withstand the torque output of the electric motor(s) and efficiently transmit it to the wheels.

3. Regenerative Braking: Electric vehicles often utilize regenerative braking, which converts the vehicle’s kinetic energy into electrical energy and stores it in the battery. The axles in electric vehicles may incorporate systems or components that enable regenerative braking, such as sensors, controllers, and electric brake actuators.

4. Space Optimization: Electric vehicles often have different packaging requirements compared to traditional internal combustion engine vehicles. The axles in electric vehicles are designed to accommodate the space constraints and specific layout of the vehicle, considering the placement of the battery pack, electric motor(s), and other components.

5. Weight Considerations: Electric vehicles strive to optimize weight distribution to enhance efficiency and handling. Axles in electric vehicles may be designed with lightweight materials or innovative construction techniques to minimize weight while maintaining structural integrity and durability.

It’s important to note that the specific design and characteristics of axles in electric vehicles can vary depending on the vehicle manufacturer, drivetrain configuration (e.g., front-wheel drive, rear-wheel drive, all-wheel drive), and other factors. Automotive manufacturers and suppliers continually innovate and develop new axle technologies to meet the evolving demands of electric vehicle propulsion systems.

axle

Can you provide insights into the advancements in axle technology in recent years?

In recent years, there have been significant advancements in axle technology to enhance performance, efficiency, and safety in vehicles. Here are some insights into the key advancements:

  1. Lightweight Materials:
  2. One notable advancement is the use of lightweight materials in axle construction. Manufacturers have increasingly utilized materials such as aluminum alloys and high-strength steels to reduce the weight of axles without compromising strength and durability. Lighter axles contribute to improved fuel efficiency and overall vehicle performance.

  3. Electronic Differential:
  4. Electronic differentials, also known as eDiffs, have gained popularity in recent years. They utilize sensors, actuators, and control algorithms to monitor and distribute torque between the wheels more efficiently. Electronic differentials enhance traction, stability, and handling by actively managing torque distribution, especially in vehicles equipped with advanced stability control systems.

  5. Advanced Axle Bearings:
  6. Axle bearings have seen advancements in design and materials to reduce friction, improve efficiency, and enhance durability. For example, the use of roller bearings or tapered roller bearings has become more prevalent, offering reduced frictional losses and improved load-carrying capacity. Some manufacturers have also introduced sealed or maintenance-free bearings to minimize maintenance requirements.

  7. Electric Axles:
  8. With the rise of electric vehicles (EVs) and hybrid vehicles, electric axles have emerged as a significant technological advancement. Electric axles integrate electric motors, power electronics, and gear systems into the axle assembly. They eliminate the need for traditional drivetrain components, simplify vehicle packaging, and offer benefits such as instant torque, regenerative braking, and improved energy efficiency.

  9. Active Suspension Integration:
  10. Advancements in axle technology have facilitated the integration of active suspension systems into axle designs. Active suspension systems use sensors, actuators, and control algorithms to adjust the suspension characteristics in real-time, providing improved ride comfort, handling, and stability. Axles with integrated active suspension components offer more precise control over vehicle dynamics.

  11. Improved Sealing and Lubrication:
  12. Axles have seen advancements in sealing and lubrication technologies to enhance durability and minimize maintenance requirements. Improved sealing systems help prevent contamination and retain lubricants, reducing the risk of premature wear or damage. Enhanced lubrication systems with better heat dissipation and reduced frictional losses contribute to improved efficiency and longevity.

  13. Autonomous Vehicle Integration:
  14. The development of autonomous vehicles has spurred advancements in axle technology. Axles are being designed to accommodate the integration of sensors, actuators, and communication systems necessary for autonomous driving. These advancements enable seamless integration with advanced driver-assistance systems (ADAS) and autonomous driving features, ensuring optimal performance and safety.

It’s important to note that the specific advancements in axle technology can vary across different vehicle manufacturers and models. Furthermore, ongoing research and development efforts continue to drive further innovations in axle design, materials, and functionalities.

For the most up-to-date and detailed information on axle technology advancements, it is advisable to consult automotive manufacturers, industry publications, and reputable sources specializing in automotive technology.

axle

What is the primary function of an axle in a vehicle or machinery?

An axle plays a vital role in both vehicles and machinery, providing essential functions for their operation. The primary function of an axle is to transmit rotational motion and torque from an engine or power source to the wheels or other rotating components. Here are the key functions of an axle:

  1. Power Transmission:
  2. An axle serves as a mechanical link between the engine or power source and the wheels or driven components. It transfers rotational motion and torque generated by the engine to the wheels, enabling the vehicle or machinery to move. As the engine rotates the axle, the rotational force is transmitted to the wheels, propelling the vehicle forward or driving the machinery’s various components.

  3. Support and Load Bearing:
  4. An axle provides structural support and load-bearing capability, especially in vehicles. It bears the weight of the vehicle or machinery and distributes it evenly across the wheels or supporting components. This load-bearing function ensures stability, balance, and proper weight distribution, contributing to safe and efficient operation.

  5. Wheel and Component Alignment:
  6. The axle helps maintain proper alignment of the wheels or rotating components. It ensures that the wheels are parallel to each other and perpendicular to the ground, promoting stability and optimal tire contact with the road surface. In machinery, the axle aligns and supports the rotating components, ensuring their correct positioning and enabling smooth and efficient operation.

  7. Suspension and Absorption of Shocks:
  8. In vehicles, particularly those with independent suspension systems, the axle plays a role in the suspension system’s operation. It may incorporate features such as differential gears, CV joints, or other mechanisms that allow the wheels to move independently while maintaining power transfer. The axle also contributes to absorbing shocks and vibrations caused by road irregularities, enhancing ride comfort and vehicle handling.

  9. Steering Control:
  10. In some vehicles, such as trucks or buses, the front axle also serves as a steering axle. It connects to the steering mechanism, allowing the driver to control the direction of the vehicle. By turning the axle, the driver can steer the wheels, enabling precise maneuverability and navigation.

  11. Braking:
  12. An axle often integrates braking components, such as brake discs, calipers, or drums. These braking mechanisms are actuated when the driver applies the brakes, creating friction against the rotating axle or wheels and causing deceleration or stopping of the vehicle. The axle’s design can affect braking performance, ensuring effective and reliable stopping power.

Overall, the primary function of an axle in both vehicles and machinery is to transmit rotational motion, torque, and power from the engine or power source to the wheels or rotating components. Additionally, it provides support, load-bearing capability, alignment, suspension, steering control, and braking functions, depending on the specific application and design requirements.

China Best Sales 1840mm 13t American Model Inboard Type Axle Parts Semi Trailer Axle for Sale   axle car partChina Best Sales 1840mm 13t American Model Inboard Type Axle Parts Semi Trailer Axle for Sale   axle car part
editor by CX 2024-04-03